skip to main content


Search for: All records

Creators/Authors contains: "Feig, Vivian R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. COoking with gas Low concentrations of carbon monoxide (CO) have shown therapeutic benefit in preclinical models, but safe delivery of appropriate dose has been challenging to achieve. Here, inspired by molecular gastronomy, Byrne et al . designed gas-entrapping materials (GEMs) using components generally recognized as safe, including xanthan gum, methylcellulose, maltodextrin, and corn syrup. Solid, hydrogel, and foam GEMs containing CO could deliver different concentrations of the gas to healthy rodents and pigs through noninhaled routes. In rodent models of colitis, acetaminophen overdose, and radiation-induced proctitis, rectally administered foam GEMs reduced tissue injury and inflammation. Foam GEMs could help achieve safe therapeutic CO delivery. 
    more » « less
  3. Abstract

    Stem cells are a promising treatment option for various neurological diseases such as stroke, spinal cord injury, and other neurodegenerative disorders. However, the ideal environment to optimize the therapeutic potential of the cells remains poorly understood. Stem cells in the native environment are influenced by a combination of mechanical, chemical, and electrical cues for proliferation and differentiation. Because of their controllable properties, conductive hydrogels are promising biomaterials to interact with stem cells. Herein, this work develops an interpenetrating conducting polymer hydrogel with tunable mechanical properties. The hydrogel serves as a platform to provide mechanical and electrical cues for interactions with mesenchymal stem cells (MSCs). This work optimizes the formulation of the hydrogel for maximum viability of MSCs and relatively higher cytoskeletal protein expression. The viability of cells is not affected due to electrical stimulation (ES). Further, ES alters the trophic factor secretion of MSCs, with significant increase in VEGF pathway genes—VEGFA and HSPB1. In addition, substrate stiffness of the hydrogel enhances the VEGFB secretion compared to control. Hence, the conducting polymer hydrogel system creates a tunable physical and electrical niche to enhance the therapeutic potential of stem cells for neurological injuries.

     
    more » « less